Part Number Hot Search : 
HD74LS09 F4001 EB634R30 1N750 MV314TGN E004719 74HC15 J074NF10
Product Description
Full Text Search
 

To Download IRF5305S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF5305S/l l advanced process technology l surface mount (IRF5305S) l low-profile through-hole (irf5305l) l 175c operating temperature l fast switching l p-channel l fully avalanche rated s d g absolute maximum ratings the d 2 pak is a surface mount power package capable of accommodating die sizes up to hex-4. it provides the highest power capability and the lowest possible on- resistance in any existing surface mount package. the d 2 pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0w in a typical surface mount application. the through-hole version (irf5305l) is available for low- profile applications. description v dss = -55v r ds(on) = 0.06 w i d = -31a parameter typ. max. units r q jc junction-to-case CCC 1.4 r q ja junction-to-ambient ( pcb mounted,steady-state)** CCC 40 thermal resistance c/w parameter max. units i d @ t c = 25c continuous drain current, v gs @ -10v ? -31 i d @ t c = 100c continuous drain current, v gs @ -10v ? -22 a i dm pulsed drain current ?? -110 p d @t a = 25c power dissipation 3.8 w p d @t c = 25c power dissipation 110 w linear derating factor 0.71 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ?? 280 mj i ar avalanche current ? -16 a e ar repetitive avalanche energy ? 11 mj dv/dt peak diode recovery dv/dt ?? -5.8 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c to-263 to-262 2014-8-30 1 www.kersemi.com
IRF5305S/l ? v dd = -25v, starting t j = 25c, l = 2.1mh r g = 25 w , i as = -16a. (see figure 12) ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) notes: ? i sd -16a, di/dt -280a/s, v dd v (br)dss , t j 175c ? pulse width 300s; duty cycle 2%. ? uses irf5305 data and test conditions source-drain ratings and characteristics parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -55 CCC CCC v v gs = 0v, i d = -250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC -0.034 CCC v/c reference to 25c, i d = -1ma ? r ds(on) static drain-to-source on-resistance CCC CCC 0.06 w v gs = -10v, i d = -16a ? v gs(th) gate threshold voltage -2.0 CCC -4.0 v v ds = v gs , i d = -250a g fs forward transconductance 8.0 CCC CCC s v ds = -25v, i d = -16a ? CCC CCC -25 a v ds = -55v, v gs = 0v CCC CCC -250 v ds = -44v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v q g total gate charge CCC CCC 63 i d = -16a q gs gate-to-source charge CCC CCC 13 nc v ds = -44v q gd gate-to-drain ("miller") charge CCC CCC 29 v gs = -10v, see fig. 6 and 13 ?? t d(on) turn-on delay time CCC 14 CCC v dd = -28v t r rise time CCC 66 CCC i d = -16a t d(off) turn-off delay time CCC 39 CCC r g = 6.8 w t f fall time CCC 63 CCC r d = 1.6 w, see fig. 10 ?? between lead, CCC CCC and center of die contact c iss input capacitance CCC 1200 CCC v gs = 0v c oss output capacitance CCC 520 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 250 CCC ? = 1.0mhz, see fig. 5 ? electrical characteristics @ t j = 25c (unless otherwise specified) i gss ns i dss drain-to-source leakage current nh 7.5 l s internal source inductance parameter min. typ. max. u nits conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC -1.3 v t j = 25c, i s = -16a, v gs = 0v ? t rr reverse recovery time CCC 71 110 ns t j = 25c, i f = -16a q rr reverse recovery charge CCC 170 250 nc di/dt = -100a/s ?? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) a s d g -31 -110 2014-8-30 2 www.kersemi.com
fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 d ds 20s pulse w idth t = 25c c a -i , drain-to-source current (a) -v , drain-to-source voltage (v) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 1 10 100 1000 0.1 1 10 100 d ds a -i , drain-to-source current (a) -v , drain-to-source volta g e ( v ) vgs top - 15v - 10v - 8.0v - 7.0v - 6.0v - 5.5v - 5.0v bottom - 4.5v -4.5v 20 s pulse w idth t = 175c c 1 10 100 45678910 t = 25c j t = 175c j a v = -25v 20s pulse w idth ds gs -v , gate-to-source volta g e ( v ) d -i , drain-to-source c urrent (a) 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , d rain-to-s ource o n r esistance ds(on) (normalized) a i = -2 7a v = -10v d gs fig 2. typical output characteristics fig 4. normalized on-resistance vs. temperature t j = 25c t j = 175c IRF5305S/l 2014-8-30 3 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 500 1000 1500 2000 2500 1 10 100 c, capacitance (pf) a v = 0v , f = 1mhz c = c + c , c shorte d c = c c = c + c gs iss g s g d ds rss g d oss ds g d c iss c oss c rss ds -v , drain-to-source volta g e ( v ) 0 4 8 12 16 20 0 102030405060 q , total g ate char g e ( nc ) g a for test circuit s ee figure 13 v = -44v v = -28v i = -16 a gs -v , g ate-to-source voltage (v) d ds ds 10 100 1000 0.4 0.8 1.2 1.6 2.0 t = 25c j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain volta g e ( v ) t = 175c j 1 10 100 1000 1 10 100 ope ration in this area limite d by r ds(on) 100s 1ms 10ms a t = 25c t = 175c sin g le p u ls e c j ds -v , drain-to-source volta g e ( v ) d -i , drain current (a) IRF5305S/l 2014-8-30 4 www.kersemi.com
fig 10a. switching time test circuit fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds -10v pulse width 1 s duty factor 0.1 % r d v gs v dd r g d.u.t. v ds 90% 10% v gs t d(on) t r t d(off) t f + - 25 50 75 100 125 150 175 0 5 10 15 20 25 30 35 t , case temperature ( c) -i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) IRF5305S/l 2014-8-30 5 www.kersemi.com
fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge -10v d.u.t. v ds i d i g -3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v ( br ) dss i as r g i as 0.01 w t p d.u.t l v ds v dd driver a 15v -20v 0 100 200 300 400 500 600 700 25 50 75 100 125 150 175 j e , single pulse avalanche energy (m j) as a startin g t , junction temperature ( c ) v = -25v i top -6.6a -11a bo tto m -16a dd d IRF5305S/l 2014-8-30 6 www.kersemi.com
peak diode recovery dv/dt test circuit p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ? ? r g v dd dv/dt controlled by r g i sd controlled by duty factor "d" d.u.t. - device under test d.u.t * circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * reverse polarity of d.u.t for p-channel v gs [ ] [ ] *** v gs = 5.0v for logic level and 3v drive devices [ ] *** IRF5305S/l 2014-8-30 7 www.kersemi.com
d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x part number logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a IRF5305S/l 2014-8-30 8 www.kersemi.com
package outline to-262 outline to-262 part marking information IRF5305S/l 2014-8-30 9 www.kersemi.com
tape & reel information d 2 pak 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.42 9) 10.70 (.42 1) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.06 3) 1.50 (.05 9) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min . 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. IRF5305S/l 2014-8-30 10 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRF5305S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X